朱伟老师的个人简介


朱伟,1976年生,博士,教授,硕士生导师,中国科学院数学与系统科学研究院博士后,纽约大学、香港城市大学访问学者,重庆市第四届优秀人才计划项目获得者,重庆邮电大学首届十佳优秀青年教师。重庆邮电大学系统理论及其应用研究中心主任,复杂系统理论分析与控制创新团队负责人。重庆市数学会常务理事,重庆市工业与应用数学会理事。美国《数学评论》(Mathematical Reviews)特约评论员。在IEEE Transactions on Automatic Control, Automatica、IEEE Transactions on Systems, Man and Cybernetic, Part A、J. Math. Anal. Appl.等国际著名期刊上发表科研论文30余篇,其中SCI检索20余篇,ESI收录2篇,SCI他引240余次,Google Scholar显示引用率超过400次。发表论文目前单篇被SCI引用最高为62次。主持国家自然科学基金1项,重庆市自然科学基金2项,重庆市高等学校优秀人才计划项目1项,教委教改项目1项。获重庆市科学技术奖(自然科学类)三等奖3项。

1 教育背景和工作经历

  • 2015.01.6-2015.01.13,2015.02.02-2015.02.06 北京大学工学院 智能控制实验室,交流访问(合作导师:王龙教授)
  • 2014.02.13-2014.02.28 香港城市大学,Senior Research Associate(合作导师:冯刚教授,刘璐博士)
  • 2012.08.22-2013.08.23 纽约大学工学院,Visiting Research Scholar (合作导师:姜钟平教授)
  • 2008.07-2010.07 中国科学院数学与系统科学研究院,博士后(合作导师:程代展研究员)
  • 2004.08-2007.06 四川大学数学学院,应用数学,博士
  • 2001.08-2004.07 重庆邮电学院(现重庆邮电大学),控制理论与工程 硕士
  • 1995.08-1999.07  四川大学数学学院 数学基地班 学士

2 主持项目

[1] 重庆市教委,基于事件驱动的多智能体系统一致性研究,重庆市第四届高等学校优秀人才计划项目(省部级人才计划)

[2] 国家自然科学基金, 脉冲时滞二阶多智能体系统的一致性分析与控制(No. 61004042)

[3] 重庆市自然科学基金, 时滞切换系统的稳定性分析及在多自主体同步中的应用(CSTC 2009BB2417)

[4] 重庆市自然科学基金基础与前沿研究项目,分数阶多智能体系统一致性理论研究(CSTC 2013jcyjA00026)

[5] 重庆市教委教改项目,以工为主的高校数学与应用数学专业人才培养方案及模式的研究与实践(09-3-093)

[6] 重庆邮电大学博士启动基金,脉冲泛函微分方程的定性分析及其在神经网络中的应用

[7] 重庆邮电大学《数学建模与数学实验》重点课程负责人

3 主要获奖

[1] 科研获奖

  •  2008年度,非线性系统复杂行为分析与控制,重庆市自然科学三等奖(排名4)
  •  2009年度,不动点的部分问题研究及其应用,重庆市自然科学三等奖(排名2)
  •  2011年度,脉冲时滞系统的定性分析与混合控制,重庆市自然科学三等奖(排名3)

[2] 指导学生课外科技活动获奖

  •  2005年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖1项,二等奖2项
  •  2006年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖0项,二等奖2项
  •  2007年指导学生获全国数学建模竞赛全国二等奖2项,重庆市一等奖2项,二等奖1项
  •  2007年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
  •  2008年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖2项,二等奖3项
  •  2009年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖4项,二等奖3项
  •  2010年指导学生获全国数学建模竞赛重庆市一等奖2项,二等奖3项
  •  2010年重庆邮电大学优秀社团指导教师(数学俱乐部)
  •  2011年指导学生获全国数学建模竞赛重庆市一等奖3项,二等奖2项
  •  2012年指导学生获全国数学建模竞赛重庆市一等奖4项
  •  2012年指导学生获美国数学建模竞赛Meritorious Winner 1项
  •  2012年获全国大学生数学建模竞赛重庆赛区优秀指导教师称号
  •  2013年指导学生获美国数学建模竞赛Honorable Mention 2项
  •  2014年指导学生获全国数学建模竞赛全国二等奖1项,重庆市一等奖3项

[3]   其他获奖

  •   2011年获重庆邮电大学优秀共产党员称号
  •   2013年重庆邮电大学首届十佳优秀青年教师

4 2006年以来发表的主要科研论文

[1] Wei Zhu, Zhong-Ping, Jiang, Event-Based Leader-following Consensus of Multi-agent Systems with Input Time Delay, IEEE Transactions on Automatic Control, online, DOI 10.1109/TAC.2014.2357131.

[2] Wei Zhu, Zhong-Ping, Jiang, Gang Feng, Event-Based Consensus of Multi-agent Systems with General Linear Models, Automatica, 50(2): 552-558, 2014. (SCI: AC8WS)

[3] Wei Zhu,Daizhan Cheng,Leader-Following Consensus of Second-Order Agents with Multiple Time Varying Delays, Automatica, 46(2010) 1994-1999. (SCI: 689KM)

[4] Huaqing Li, Xiaofeng Liao, Tingwen Huang, and Wei Zhu, Event-triggering Sampling Based Leader-following Consensus in Second-order Multi-agent Systems, IEEE Transactions on Automatic Control, online

[5] Huaqing Li, Xiaofeng Liao, Tingwen Huang, Wei Zhu, and Yanbing Liu, Second-Order Global Consensus in Multiagent  Networks With Random Directional Link Failure, IEEE Transactions on Neural Networks and Learning Systems, online.

[6] Huaqing Li, Xiaofeng Liao, Xinyu Lei, Tingwen Huang, and Wei Zhu,

Second-Order Consensus Seeking in Multi-Agent Systems With Nonlinear Dynamics Over Random Switching Directed Networks,IEEE Transaction on Circuits and Systems-I: Regular Papers, 60(6):1595-1607,2013. (SCI: 153MP)

[7] Wei Zhu,Consensus of Multi-agent Systems with Switching Jointly Reachable Interconnection and Time Delays, IEEE Transactions on Systems, Man and Cybernetic, Part A, (Regular Paper), 42(2):348-358,2012. (SCI:895QZ)

[8] Wei Zhu,Consensus of Discrete Time Second-Order Multiagent Systems with Time Delay,Discrete Dynamics in Nature and Society,Volume 2012, Article ID 390691, 9 pages (SCI: 060YN)

[9] Sun Feng-Lan and Zhu Wei,Finite-time consensus for leader-following multi-agent systems over switching network topologies,Chin. Phys. B, 22(11), 110204, 2013. (SCI: 258UY)

[10] Fenglan Sun and Wei Zhu, Finite-time consensus for heterogeneous multi-agent systems with mixed-order agents,International Journal of Systems Science, Online, DOI:10.1080/00207721.2013.843732 (SCI )

[11] Ping Zhou, Wei Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis: Real World Applications, 12 (2011) 811-816. (SCI: 689HQ)

[12] Wei Zhu,Stability Analysis of Switched Impulsive Systems with Time Delays, Nonlinear Analysis: Hybrid Systems, 4 (2010) 608-617. (SCI:V22OX)

[13] Chunde Yang, Wei Zhu,Stability analysis of impulsive switched systems with time delays,Mathematical and Computer Modelling,50(2009)1188-1194.(SCI:490AP)

[14] Yumei Huang, Wei Zhu,Daoyi Xu,Invariant and attracting set of fuzzy cellular neural networks with variable delays,Applied Mathematics Letters, 22(2009) 478-483.(SCI:426AP)

[15] Wei Zhu,Global exponential stability of impulsive reaction diffusion equation with variable delays,Applied Mathematics and Computation 205 (2008) 362-369。(SCI:367XM)

[16] Wei Zhu, Invariant and Attracting Sets of Impulsive Delay Difference Equations with Continuous Variable, Computers and Mathematics with Applications, 55(2008)2732-2739.(SCI: 309XM)

[17] Wei Zhu, Daoyi Xu, Yumei Huang, Global impulsive exponential synchronization of time-delayed coupled chaotic systems, Chaos, Solitons and Fractals, 35(2008)904-912. (SCI:ID236)

[18] Wei Zhu, A Sufficient Condition for Asymptotic Stability of Discrete Time Interval System with Delay, Discrete Dynamics in Nature and Society, Vol.2008, 7 pages. (SCI:332GD)

[19] Wei Zhu, Daoyi Xu and  Chunde Yang,Exponential stability of singularly perturbed impulsive delay differential equations,J. Math. Anal. Appl., 328 (2007)1161-1172.(SCI:131EJ)

 [20] Shujun Long, Daoyi Xu and Wei Zhu, Global Exponential Stability of Impulsive Dynamical Systems with Distributed Delays, Electronic Journal of Qualitative Theory of Differential Equations, 10(2007)1-13.(SCI:274QM)

[21] Wei Zhu, Daoyi Xu and  Zhichun Yang, Global exponential stability of impulsive delay difference equation, Applied Mathematics and Computation, 181(2006)65-72. (SCI:108ZB)

[22] Wei Zhu, Daoyi Xu, Asymptotic Stability of Second-Order Discrete-Time Hopfield Neural Networks with Variable Delays, Lecture Notes in Computer Science, 3971(2006) 261-266. (SCI: BEM20)

[23] Daoyi Xu, Wei Zhu and  Junshu Long, Global Exponential Stability of Impulsive Integro- differential Equation, Nonlinear Analysis, 64(2006) 2805-2816. (SCI:040JR)

[24] Wei Zhu, MaoSen Wang, ChunDe Yang Leader-following Consensus of Fractional-Order Multi-agent Systems with General Linear Models,Proceeding of the 11th World Congress on Intelligent Control and Automation Shenyang, China, June 29 -July 4,2014:3491-3494. (EI: )

 [25] ZHU Wei, YAN Chao, Consensus Analysis of Second-Order Agents with Active Leader and Time Delay via Impulsive Control, Proceedings of the 30th Chinese Control Conference, July 22-24, 2011, Yantai, China, pp.4753-4757(EI: 20113914369683)

 [26] Ping Zhou, Wei Zhu,A novel fractional-order hyperchaotic system and its synchronization, Advances in Differential Equations and Control Processes, 3(1)(2009)53-61.

 [27] Wei Zhu, Daoyi Xu, Global Exponential Stability of Fuzzy Cellular Neural Networks with Impulses and Infinite Delays, Journal of Mathematical Research and Exposition, 28(1)(2008)1-10.

 [28] Wei Zhu, Stability Analysis of Fuzzy Differential Equations with Delay, Annals of Differential Equations,23(2007) 603-607.

[29] Wei Zhu, Zhaoyin Xiang and Zhiguo Yang, Mean Square Exponential Stability of Stochastic Vector Difference Equations with Variable Delays, J. Sichuan University,44(2007)495-498.

联系方式:重庆邮电大学数理学院,邮编 400065;email:zhuwei@cqupt.edu.cn; Tel:+86 23 62471791

 

数学建模与仿真

        友情链接:                      
  版权所有  重庆邮电大学理学院  学院办公室电话:023-62471796 学院邮箱:SLXY@CQUPT.EDU.CN
欢迎您是第12864个访问者!  管理入口